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Abstract 

Surfaces on which the lines of curvature form geodesics and parallels are discretized in a purely 
geometric manner. Discrete principal curvatures are defined and it is shown that the natural discrete 
Gau8 equation is given by the standard discrete Schr6dinger equation with the discrete GauBian 
curvature as its potential. The subclass of discrete surfaces of revolution is considered and used to 
establish algebraic and geometric properties which are reminiscent of those known in the continuous 
case. Important connections with integrable discrete equations are also recorded. © 1999 Elsevier 
Science B.V. All rights reserved. 
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1. Introduction 

The study of coordinate systems which are canonical on a given class of  surfaces consti- 

tutes an integral part of  the differential geometry of  surfaces. The most important coordi- 

nate systems to be found in the classical literature are asymptotic,  conjugate, curvature and 

geodesics coordinates. In the past few years, the discretizations of asymptotic and conjugate 

coordinates proposed by Sauer [ 1,2] in the 1940s have been exploited to construct integrable 

discrete versions of pseudospherical  surfaces [3], affine spheres [4,5] and conjugate coordi- 

nate systems [6-8]. Recently, lattices composed of  cyclic quadrilaterals, which are relevant 

in computer aided surface design [9,10], have been identified as canonical discretizations of 

curvature coordinates. They have been used to obtain integrable discrete isothermic surfaces 
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[11], surfaces of constant positive GauBian curvature [12], orthogonal coordinate systems 

[13-15] and coordinate systems of Egorov type [8]. However, it appears that geodesics 
and their corresponding orthogonal trajectories (parallels), which were introduced in GauB' 

Disquisitiones [ 16], have not been considered in the context of integrable discrete geometry. 

The present paper addresses this issue. 
As a first step towards the discretization of geodesic coordinates on surfaces, we here 

consider geodesics and parallels which constitute lines of curvature. We give natural dis- 
cretizations of the geodesics and parallels and define discrete principal curvatures in a purely 

geometric manner. In the continuous case, the Gaul3 equation reduces to a Schr6dinger 
equation with the Gaul3ian curvature as potential if one parametrizes a surface in terms 

of geodesic coordinates. Remarkably, it tums out that the canonical discrete analogue of 
the Gaul3 equation is given by the standard discrete Schr6dinger equation with the product 

of the discrete principal curvatures being the potential. Hence, we here propose to define 
the discrete Gaul3ian curvature as the product of the discrete principal curvatures as in the 

continuous case. 
Surfaces of revolution form a subclass of the surfaces considered here. Accordingly, we 

define discrete surfaces of revolution and discuss several specializations in order to test the 

validity of our definitions in the discrete case. Thus, we investigate in detail surfaces of 
constant Gaul3ian curvature, their Darboux transform and the class of Weingarten surfaces 

which is obtained by assuming that the principal curvatures are proportional. We establish 
important algebraic and geometric analogies between the discrete and continuous cases. 
In particular, connections with an integrable discrete pendulum equation, the integrable 

differential-difference Heisenberg spin equation [17,18] and a multi-parameter class of 

integrable mappings [19,20] are recorded. 

2. Geodesic and parallel lines of curvature 

This section is concerned with the properties of the class of surfaces on which the lines 
of curvature form geodesics and their associated orthogonal trajectories. We give canonical 

examples of such surfaces which will be used to 'test' the discretization procedure discussed 
in the next section. 

2.1. Principle curvatures and the Gaufl equation 

If  a surface E: r = r(s, t) in Euclidean space R 3 is parametrized in terms of geodesic 
coordinates, that is a family of geodesics and their orthogonal trajectories (parallels), then 
the first fundamental form I = dr .  dr takes the simple form 

I = ds 2 + ~b 2 dt 2. (2.1) 

Here, the geodesics t = const, are parametrized in terms of arclength, that is r~ = 1, and 
the lines s = const, form a family of parallels on the surface. According to the Theorema 
egregium [21], the Gaul3ian curvature of the surface may be expressed entirely in terms of the 
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coefficients of  the first fundamental form. In particular, in the present case, the Gaul~ equation 

takes the form of a Schrrdinger equation with the GauBian curvature K~ as potential [21]: 

4)~s + K~q~ = 0. (2.2) 

In the sequel, we focus on the subclass of  surfaces for which the geodesics and parallels 

constitute lines of  curvature. In this case, the second fundamental form II = - d N  • dr is 

purely diagonal, viz. 

II = x ~) ds 2 -F tc(t)~b 2 dt 2, (2.3) 

where N is the unit normal to the surface and x¢s) x tt) denote the principal curvatures of 

the s- and t-curvature lines, respectively. The GauBian curvature is then given by 

/C = x(~)x ~t). (2.4) 

The principal curvatures may be conveniently characterized in terms of  properties of the 

geodesics. Thus, the unit tangent t, principal normal n and binormal b attached to the s-lines 

satisfy the linear Serret-Frenet equations [121 ]: 

n ---- 0 , 

b - r  

(2.5) 

with x and r being the corresponding curvature and torsion. Consequently, the right-handed 

orthonormal triad (t, n, b) forms a canonical frame on the surface E since 

r~ = t, (2.6a) 

rt = ~bb, (2.6b) 

N = n (2.6c) 

and the principal curvatures read 

x ~~ ) = x, (2.7a) 

K( t /_  _ _ _ b  .nt  (2.7b) 

For convenience, the surface and principal normals have been chosen to have the same 

orientation. 
In Section 3, it is shown that the above relations for the principal curvatures admit 

canonical discrete counterparts which may be obtained in a purely geometric manner. 

2.2. Surfaces o f  revolution 

An important subclass of  the surfaces considered here are surfaces of revolution. A surface 

of  revolution is generated by a planar curve (generator) which is rotated around an axis lying 
in the plane of the generator. The meridians of  the surface of  revolution are the geodesics 
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Fig. 1. The generator of a surface of revolution. 

t = const, and the parallels s = const, consist of  circles. Without loss of generality, the 

position vector r = r(s ,  t) may be taken to be 

r ( s )  cos(cot) ) 

r = r ( s )  sin(cot) , (2.8) 

z(s) 

where the functions r ( s )  and z ( s )  are related by the arclength condition 

2 "~ rs + Zs = 1. (2.9) 

In order to be able to compare the continuous case with the discrete one, the constant angular 

velocity co has not been scaled to unity. The curve F :  r = r(s ,  0) constitutes the generator 

of  the surface of  revolution. The constraint (2.9) may be solved identically by introducing 

an angle f l (s )  according to 

rs = cos/3, (2.10a) 

z,~, = sin/~. (2.10b) 

The geometric relation between r, z and 13 is illustrated in Fig. 1. 

The principal curvatures are readily derived from the representation (2.10). They are 

given by 

xc~) = fl,,, x~r) _ sinfl (2.11) 
r 

In view of a canonical discretization procedure, it turns out convenient to be to focus on 
the standard geometric interpretation of  the principal curvatures in this case. Thus, given 

a point P on the surface of  revolution, the osculating circle associated with the meridian 

passing through P lies in the plane spanned by the axis of  rotation and the meridian. If  we 
denote its radius by p, the principal curvature x {s) takes the form 

1 
K c~) = x = - .  (2.12) 

P 



B.G. Konopelchenko, W.K. Schief /Journal of Geometry and Physics 31 (1999) 75-95 79 

i!~i! 

Fig. 2. The pseudopshere and its generator (tractrix). 

On the other hand, it is readily verified that 

1 
tc Ctl ---- (2.13) 

pIt) ' 

where p(t) is the distance between the point P and the axis in the direction of  the (principal) 

normal (cf. Fig. 1). It is also noted that the Gaul3 equation (2.2) may be regarded as a 

Schr6dinger equation for the radial distance r since 4' = cor and whence 

r,s + ) C r  = 0. (2.14) 

2.2.1. The pseudosphere 

In the case of  pseudospherical surfaces, that is without loss of  generality,/C = - 1, the 

Schr6dinger equation (2.14) admits the first-order reduction 

r, = -+-r. (2.15) 

This implies that the distance of  a point on the generator to the axis in tangential direction 

is 

d = = = 1 = const. (2.16) 

The latter property defines the classical tractrix which is displayed in Fig. 2. The associated 

surface of  revolution constitutes the pseudosphere. 

2.2.2. A Hasimoto surface o f  revolution 
The classical Darboux transformation [22] provides a purely algebraic means of  gener- 

ating a sequence of  potentials in a Schr6dinger equation along with their corresponding 
eigenfunctions if the eigenfunctions associated with a seed potential are known. It is there- 

fore natural to investigate the action of  the Darboux transformation on (2.14). Here, we 
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Fig. 3. A Hasimoto surface of revolution and its generator. 

consider a degenerate Darboux transformation which reads as follows: if r and ~ are two 

solutions of  the Schr6dinger equation (2.14) with seed potential/C, then another solution 

of  the Schr6dinger equation is given by 

! r s  ^ ](7I 
r = rs - - - r ,  = 1C - 2 ( l n r ) s s .  (2.17) 

r 

However, since the Wronskian w ( r ,  ~) = r~s - rs~ is constant, the above transformation 

for r reduces to an ' inversion'  

C 
r t = - ,  (2.18) 

r 

where c is an arbitrary constant. 

Once again, it is instructive to consider the simplest case/C = - 1. Hence, 

2 
r = coshs ,  r t -  (2.19) 

cosh s 

form a corresponding pair of  eigenfunctions with an associated new potential 

1 
/C' = - 1 (2.20) 

cosh 2 s 

and integration of  the pr imed version of  the relations (2. lOb) yields 

z'  = - s  + 2 t a n h s  (2.21) 

without loss of  generality. The corresponding generator F t is depicted in Fig. 3. It contains 

a loop and therefore generates a self-intersecting surface of  revolution. 

The appearance of  a one-soliton sech2-potential and a ' loop soliton'  as generator is not 

coincidental. Indeed, the connection with soliton theory is readily established if  one makes 

use of  the fact that the new principal curvature K (s)t reads 

x { s ) ' = x ' - = f l ~ = r  '. (2.22) 
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Thus, on the one hand, it is natural to consider the general case of a surface of revolution 

subject to the constraint 

r = ~x = cfls, (2.23) 

where ? is an arbitrary constant. Insertion of this condition into (2.10a) produces the pen- 
dulum equation 

~/~, = cos 13. (2.24) 

It turns out that the well-known kink solution of the pendulum equation gives rise to the 

above surface of revolution. 
On the other hand, combination of (2.22) and the primed version of (2.6b) shows that 

r' t = cox'b' which implies that the generator F '  evolves in binormal direction with speed 

proportional to the curvature x' .  This kind of evolution of a curve has been discussed by 
Hasimoto [23] in connection with the self-induced motion of a thin isolated vortex filament 

travelling without stretching in an incompressible fluid. Thus, ifr(s,  t) denotes the position 

of the vortex filament in space, then its motion may be shown to be constrained by 

rr = xb ,  (2.25a) 

r7 = 1. (2.25b) 

The latter condition encodes the assumption of a nonstretching curve (filament). Since the 

binormal b is orthogonal to both the unit tangent t = rs and the principal normal n, the 
Serret-Frenet equations (2.5) deliver 

xb  = t x t~. (2.26) 

Consequently, cross-differentiation of (2.25a) and r,  = t results in the integrable Heisenberg 

spin equation 

tt = t X tss. (2.27') 

The latter is linked to the nonlinear Schr6dinger (NLS) equation via a gauge (Miura-type) 
transformation [24,25] and may also be mapped to a complex loop soliton equation by 

employing a reciprocal transformation. The stationary one-soliton solution of the NLS 
equation induces a motion of the filament in such a way that the above surface of revolution 
is swept out. Moreover, the corresponding solution of the loop soliton equation at any fixed 

time t is represented by the generator of that surface [26]. 

2.2.3. Weingarten surfaces 

A class of surfaces which contains surfaces of constant GauBian curvature, constant 
mean curvature and minimal surfaces was first studied by Weingarten [21 ] in the last century. 
Weingarten surfaces are defined by the property that the principal curvatures be functionally 

dependent. Surfaces of revolution constitute a subclass of Weingarten surfaces since the 
principal curvatures depend only on the arclength parameter s and hence x ~t~ = F(h: Is)) in 
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Fig. 4. The catenoid and its generator (catenary). 

the generic case. Here, we briefly mention (Weingarten) surfaces of revolution for which a 

relation of  the form 

x {s) = c x  ~ ) ,  c = const. (2.28) 

holds. In the case c ---- 1, it is readily shown that the principal curvatures are constant and the 

meridians are circles. Hence, the corresponding surfaces of revolution constitute spheres. 

On the other hand, if the surface is minimal, that is 

= x ~s) + x It) = O,  (2.29) 

then the classical c a t e n o i d  is obtained (Fig. 4). 

It is natural to enquire as to whether there exists some intersection between the classes 

(2.23) and (2.28). Thus, insertion o f r  as given by (2.23) into the constraint (2.28) produces 

the relation 

- 2 
c /3  s - c sin/3 = 1 = 0. (2.30) 

Differentiation shows that I is a first integral of  the pendulum equation (2.24) if and only 

if c = 2. Since ? is arbitrary, the complete class of  surfaces of  revolution with 

tc ~') = 2 x  ~t) (2.31) 

is therefore contained in the 'Hasimoto'  class (2.23). The discrete analogue of  this result is 

presented in Section 3.2.3. 

3. Trapezoidal quadrilateral lattices 

Here, we are concerned with a canonical discretization of  the surfaces discussed in the 

previous section. More precisely, coordinate systems which consist of geodesic and parallel 
lines of  curvature are discretized. To this end, it is assumed that 'discrete coordinate lines' 
constitute coordinate polygons r = r ( n i  = const.), i = 1, 2 on a 7/2 lattice 

r : 7/2 ---> ~3 ,  ( n l ,  n2) ~ r(n l ,  n2).  (3.1) 
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In the sequel, the arguments of  any vertex r = r(n 1, n2) will be suppressed and its four 

neighbours denoted by 

rl = r ( n l  + l ,n2) ,  r2 = r ( n l , n 2 +  1), (3.2) 
r T = r ( n l -  l ,n2) ,  r s _ = r ( n j , n 2 - 1 ) .  

Other vertices are represented by multiple indices. For instance, (r, r j, r2, r l 2) designates 

an elementary quadrilateral. 

As mentioned in Section 1, two-dimensional cyclic quadrilateral lattices which are such 

that the vertices of  any elementary quadrilateral lie on a circle have proven to be the ap- 

propriate discrete analogue of  surfaces parametrized in terms of lines of  curvature in the 

context of  integrable discretizations of  particular classes of  surfaces such as isothermic 

surfaces [ 11 ] or coordinate surfaces of  multi-dimensional orthogonal coordinate systems 

[13-15]. On the other hand, polygons with equidistant vertices have been successfully used 

as discretizations of curves parametrized in terms of  arclength [3,27]. Now, the fundamen- 

tal forms (2.1) and (2.3) show that the class of surfaces discussed in Section 2 may be 

equivalently characterized by the existence of  a family of  lines of curvature which admits 

a parametrization in terms of arclength. Thus, it is natural to consider the class of  'discrete 

surfaces' which have the following properties: 

(i) CirculariO~ The elementary quadrilaterals (r, r l, r2, r T2) are inscribed in circles. 

(ii) Discrete arclengthparametrization. The vertices of  the coordinate polygons r --- r(n 2 = 

const.) are equidistant and the distance does not depend on n2, that is 

[rl - r e  = 1 (3 .3 )  

without loss of generality. 

This implies that the elementary quadrilaterals constitute isosceles trapezoids with 'vertical" 

sides being of unit length. For brevity, we refer to the above class of  lattices as trapezoidal 

quadrilateral lattices or trapezoidal discrete surfaces. It is noted that corresponding edges 

of  the coordinate polygons r = r(n I = constant) are parallel, that is 

r2 - r am r12 - r l .  (3.4) 

Hence, the n i-coordinate polygons may be regarded as discrete geodesics while the n~- 
coordinate polygons form a family of  parallel polygons in complete analogy with the notion 

of geodesic parallels in the continuous case. 

3. I. Discrete principle curvatures and a discrete GauJ3 equation 

In order to construct a discrete counterpart of  the GauB equation (2.2), it is necessary to 
give natural geometric analogues of the principal curvatures fc (s) and K (t~. For this purpose, 

we first recall the standard definition of  the radius of  curvature for a curve in space. Consider 
a point P on a curve and two sufficiently close points PI and P2 on this curve on either 

side of  P. The circle passing through these three points is uniquely defined and the limiting 

circle as Pl, P2 ~ P is called the osculating circle of  the curve at P. Its radius p is termed 

the radius of  curvature at P and x = 1/p is the corresponding curvature. 
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Fig. 5. The definition of the discrete principal curvatures. 

In the case of  the arclength parametrized discrete geodesics, we define the circle passing 

through three adjacent vertices r i ,  r and r l  as the osculating circle at r. l We regard the 

radius p of  the osculating circle as the radius of  curvature and its inverse x = 1/p as the 

curvature of  the geodesic at r. In analogy with the continuous case, we therefore define the 

discrete principal curvature x (l) associated with the discrete geodesic by 

1 
x (1) = x = - (3.5) 

P 

and make the identification p(l) = p. In terms of the angle between two adjacent edges, 

this means that 

F 
x (l) = 2 s i n ~ - ,  cos) /  = (rl - r ) .  ( r - r  i)  (3.6) 

as indicated in Fig. 5. 

It is interesting to note that the centre of  the osculating circle may also be constructed 

by means of  an analogue of  a classical method given by Nikolaides [28]. Thus, consider a 

planar curve F :  r = r(s) parametrized in terms of arclength for convenience. Given a point 

P on the curve with posit ion vector r,  we denote by P* the point which has the distance 

d from P in tangential direction, where d is an arbitrary constant. As P moves along the 

curve F ,  the point P* sweeps out a curve F*  with parametrization 

d r  
r* = r + d - - .  (3.7) 

ds 

One may then show that the principal normals n and n* at corresponding points P and 

P* meet at the centre of  the osculating circle associated with P.  In the discrete case, we 

consider a polygon F :  r = r(nl) subject to the discrete arclength condition Irj - r[ = 1. 

The edges of  F may be mapped to the vertices of  a polygon F*  according to 

r * = r + d ( r l - r ) ,  d = c o n s t .  (3.8) 

1 We usually commit the impropriety of referring to r as a vertex even though, strictly speaking, r is the 
position vector associated with a vertex. 
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Fig. 6. Construction of the center of the osculating circle ~ la Nikolaides. 
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so that r* - r is ' tangent' to F and the distance Ir* - rl = d is constant. By construction, 

the vertices r~, r, r l ,  r l, r* and c lie on a plane as illustrated in Fig. 6. In fact, it is readily 

verified that the perpendicular bisector m* of  the edge r* - r~ and the bisector m of  (r i , r, r l ) 

intersect at the centre c of the osculating circle associated with r. Hence, as in the continuous 

case, the lines m and m* which are 'normal '  to the polygons F and F* respectively meet 

at the centre of the corresponding osculating circle. 

The principal curvature associated with the discrete parallels is readily defined if one 

investigates the properties of  two neighbouring trapezoids (r, r i , r2, ri2) and (r, r T, r2, r i2) 

(cf. Fig. 5). Thus, the polygons (r i, r, rl ) and (ri2, r2, rl 2) define two planes which intersect 

at a straight line I. This line may be regarded as a 'local axis of  revolution' as the polygon 

(ri2, r2, rl2) is obtained from the polygon (r i , r, r l )  by rotation around l. In this way, the 
vertex r sweeps out an arc of a circle which may be interpreted as an osculating circle with 

the centre lying on the axis I. The bisectors of  the polygons (ri, r, r l )  and (ri2, r2, r12) 
intersect at a point c ~2) which lies on 1. As in the continuous case for surfaces of revolution, 

c f2) may be identified as the centre of normal curvature associated with the edge (r, r2). 

Indeed, the centre of  the osculating circle is the image of the centre of normal curvature 

under normal projection as stated in a classical theorem by Meusnier [28]. Hence, if we 

denote the distance between r and c ~2) by p(2), then it is natural to define the principal 

curvature associated with the discrete parallels by 

K(2) __ 1 
pl2)" (3.9) 

An explicit expression for x ~2) is readily obtained if one introduces the decomposition 

A2r = ~b/7, tbl = 1 (3.10) 

and a 'discrete principal normal'  n defined by 

A i t r  A i l r  
n - -  - -  - -  ( 3 . 1 1 )  

IAilrl  2 s in(v/2)  

Here, Ai and A~i constitute the forward first-order and central second-order difference 

operators, respectively, that is di  f = fi  - f ,  A~i f = f~: -- 2 f + f i .  Note that even though 
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(3.10) is reminiscent of  (2.6b), the unit vectors n and b are not orthogonal. Now, since V 

does not depend on n2, we obtain 

,~(2) ---- 2 ~ . n  _ b" A2n (3.12) 

which is a natural discretization of  (2.7b). Moreover, combination of relation (3.10) with 

its analogues corresponding to the vertices rl and r i, that is 

AZFI = ~lbl ,  AZF i = q~i/~i (3.13) 

with bl = bi = b produces 

(Ail4))b = A z A i l r  = A212 sin(v/2)n] = 2 sin(v/2)A2n (3.14) 

by virtue of  (3.11) and V2 = V. Thus, multiplication by b results in the standard discrete 

Schr6dinger equation 

Ai~b +/C~b = 0 (3.15) 

if we set 

](~ = K(I)K (2) (3.16) 

as in the continuous case. It is therefore natural to regard (3.15) as the discrete GauB equation 

for trapezoidal discrete surfaces. 

To summarize, the fundamental relations (2.2), (2.4) and (2.7) have been discretized in a 

purely geometric manner. Their discrete counterparts are given by (3.15), (3.16) and (3.6), 

(3.12), respectively. 

3.2. Discrete surfaces of revolution 

As in the continuous case, trapezoidal discrete surfaces contain an important subclass of  

lattices which may be regarded as 'discrete surfaces of  revolution'. Indeed, it is natural to 

consider a planar polygon F :  r = r(nl) whose vertices are equidistant, that is [rt - r] = 1 

without loss of  generality (cf. Fig. 7). If we now successively rotate F around an axis 

which lies in the same plane by a finite angle co = 2zr/N, N ~ ~, then a discrete surface 
E: r = r(n j, n2) is generated which possesses a 77 x rotational symmetry. It is evident that 

this discrete surface has the properties (i) and (ii) in the definition of  trapezoidal quadrilateral 
lattices. The discrete meridians n2 ---- const, represented by F are the discrete geodesics 

while the discrete parallels n l = const, consist of regular polygons ('discrete circles'). 

Without loss of  generality, the position vector of discrete surfaces of revolution may be 
taken to be 

r(nl)  cos((.on2) ) 
r = r (n l )  sin(wn2) , (3.17) 

z(nl) 
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Fig. 7. The generator of a discrete surface of revolution. 

where the functions r(n 1) and z(nl ) are related by the 'discrete arclength' condition 

(Ai r )  2 + (Alz)  2 = 1. 

The latter may be solved identically by setting 

A i r  = c o s f l ,  

AIZ = sinfl 

(3.18) 

(3.19a) 

(3.19b) 

as indicated in Fig. 7. Consequently, the second radius of  curvature at the vertex r reads 

p(2)  = r 
sin((fl + f l i) /2)  (3.20) 

so that the principal curvatures become 

x ( , ) = 2 s i n ( f l - f l i ~  ' x ( 2 ) = s i n ( ( / 3 + f l ~ ) / 2 )  (3.21) 
F 

It is noted that the straight line I in Fig. 5 coincides with the axis of revolution in Fig. 7. 
Finally, combination of the relations (3.19a), (3.21) and application of a trigonometric 

identity produces 

A~lr + Kr = 0, (3.22) 

which is the discrete analogue of the Schr6dinger equation (2.14). This result is in agreement 
with the fact that the decomposition (3.10) applied to the parametrization (3.17) leads to 

o9 
~b = 2r sin -- (3.23) 

2 

and ~b obeys the Schr6dinger equation (3.15). 
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Fig. 8. The discrete tractrix as the generator of the discrete pseudosphere. 

3.2.1. A discrete pseudosphere 
As a first test of  our definition of  the discrete principal curvatures x li), we consider the 

case of constant discrete GauBian curvature/G = - v  2. Since (3.22) now constitutes a linear 

difference equation with constant coefficients, it admits the first-order reduction 

rl = / z r ,  (3.24) 

where # and 1//z are the roots of  the characteristic equation/x 2 - (2 + v2)/z + 1 = 0. If  

/z < 1, then we denote by d the distance between the vertex r and the axis in the ( ' tangent ial ' )  

direction Air  (cf. Fig. 8). Since Izalrl = 1, the relation 

d -  1 rl 
- -  - -  - -  t~ (3.25) 

d r 
holds and hence d is constant as in the continuous case. For # > 1, a similar argument is 

applicable. We may therefore regard the po lygon / " :  r = r(n 1,0) as a discrete tractrix which 

generates a discrete pseudosphere. Remarkably, in his book on difference geometry, Saner 

[2] constructed the same discrete pseudosphere in a purely geometric manner by taking the 

condition d = const, as a natural discretization of  that defining the classical tractrix. The 

discrete pseudophere is displayed in Fig. 8. 

3.2.2. A discrete Hasimoto surface of revolution 
It is well  known that the discrete Schr6dinger equation (3.22) is form-invariant under a 

discrete version of  the classical Darboux transformation [29]. In parallel with Section 2, we 

now investigate the action of  a degenerate discrete Darboux transformation on (3.22). Thus, 

if  r and ? are two solutions of  the discrete Schr6dinger equation (3.22) with seed potential 

/C, then another solution of  the discrete Schr6dinger equation is given by 

r l  ^ r 2 
r ' = ~ l - - - r ,  K ~ ' - 2 =  ( K ; - 2 ) .  (3.26) 

r rl r i 

Once again, the Wronskian w(r, ?) = r~l - r l ?  is constant so that the above transformation 
reduces to 

c 
r '  = - ,  (3.27) 

r 

where c is an arbitrary constant. 
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Fig. 9. A discrete Hasimoto surface of revolution and its generator. 

As a seed potential, we now choose/C = - v  2 so that a particular solution of the discrete 

Schr6dinger equation (3.22) is given by the 'discrete hyperbolic cosine': 

r = ~,~t + / ~ - n l .  (3.28) 

It is readily shown that the new angle/3' represents a discrete kink if the constant c in the 

transformation law (3.27) is chosen to be 

c : 2 # + 1. (3.29) 
/ ~ - 1  

Indeed, for this value of  c, the primed version of  the relations (3.19a) and (3.19b) delivers 

fl' = 2arctan (IXn~+_~ - l't-n' ) + 7r 
~- 1 2 (3.30) 

and the new z-component of  the position vector reads 

¢ ([,.£-t-l~(IJ~?ll--] ..1~-¢11 ) 
: = - n ~  + \ ) - - ~ 1  u" '  T u - " '  " (3.31) 

The corresponding generator F' is depicted in Fig. 9. It contains a discrete loop and generates 

a discrete version of  the Hasimoto surface of  revolution displayed in Fig. 3. 

The discrete Hasimoto surface of revolution as shown in Fig. 9 may be considered 

'integrable' in the following sense. It is straightforward to show that 

t ~ ~ !  
r = cK , (3.32a) 

1 
g = (3.32b) 

(]jl/2 _ 1~-1/2)2 ' 

~' = 2 tan ~ . (3.32c) 

It is therefore natural to investigate the class of  discrete surfaces of  revolution defined by 

the relation 

r = ~ c ,  ~ c = 2 t a n ( / 3 - / 3 i ~ ,  (3.33) 
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where ? is an arbitrary constant. In geometric terms, the quantity t~ is another measure for 

the curvature of  the generator F .  In fact, 1/~ is the radius of  the dashed circle in Fig. 5 

that touches two adjacent edges of  F .  It is noted that the centres of the 'osculating' circles 

associated with tc and ~ coincide. Now, insertion of the constraint (3.33) into (3.19a) results 

in the discrete pendulum equation 

t a n  fll____...~fl - tan = ~-~ cos/3. (3.34) 

Its kink solution is given by (3.30) if we parametrize ? according to (3.32c). Interestingly, 

the kink solutions (3.30) and 

q = 4 arctan #'~ ~ (3.35) 

of  the standard integrable discrete pendulum equation [30] 

sin( q'-2q+qi)-~ = ( ~ )  sin ~ # - 1  2 ( q ' + 2 q + q i )  (3.36) 

are related by 

f i t  ql + q zr 2 2 (3.37) 

However, this connection between the discrete pendulum equations (3.34) and (3.36) is only 

valid in the case of the kink solutions. Thus, the constraint (3.37) leads to a special first 

integral which is common to both discrete pendulum equations. This particular integral of 

motion is then parametrized by the kink solution (3.30) (or (3.35)). 

It tums out that the discrete pendulum equation (3.34) is indeed integrable. Thus, consider 

a polygon F :  r = r(n 1) with I A j rl = 1 so that 

t = A I r ( 3 . 3 8 )  

may be regarded as a discrete unit ' tangent'.  It is then natural to interpret the unit vector 

which is perpendicular to the edges t and t i, that is 

b t i x t  t i x t  (~ )  t~x t  
. . . .  cot , (3.39) 

It i x tl s iny  1 + t . t  i 

as the discrete binormal attached to the vertex r, where y is, as usual, defined by 

cos y = t .  t i. (3.40) 

If we now assume in analogy with the Hasimoto vortex motion that the discrete curve 
F evolves in binormal direction with speed ~ in such a way that the 'discrete arclength 

condition' I A i rl = 1 is preserved, then compatibility of 

/" = t~b = 2tan ( ~ )  b (3.41, 
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and (3.38) produces the integrable differential~lifference Heisenberg spin equation 

[17,18,27] 

i = 2 A i  ( l t i  × t  ~ - t ' ) i / '  (3.42) 

Here, the overdot indicates differentiation with respect to time t. 
Quispel et al. [19] have noted that the ansatz 

{ cos cos ) 
t = / cos/3 sin2~rt (3.43) 

\ sin fl 

is admissible and reduces the differential-difference Heisenberg spin equation to a second- 

order difference equation for x = tan(/~/2) which is contained in an 18-parameter class of 

integrable reversible mappings of the plane that may be parametrized in terms of elliptic 

functions. In the present context, the reduction (3.43) has a distinct geometric meaning. 

Indeed, the relation (3.38) shows that the position vector of F takes the form 

r = r (n I ) sin 2or t , (3.441) 

: (n 1 ) 

where r (n i) and z (n i) are related to/4 by (3.19a) and (3.19b). Thus, the polygon F sweeps 
out a (semi-discrete) surface of revolution. Now, on the one hand, it is readily verified that 

f = - 2 c r r b  (3.45) 

so that comparison with the evolution (3.41) reveals that the condition (3.33) is satisfied 
with 2&r = - 1. On the other hand, the surface of revolution represented by (3.44) may 

be obtained from the discrete surfaces of revolution considered here in the limit N ~ oc. 

Hence, the constraint (3.43) reduces the differential-difference Heisenberg spin equation 

(3.42) to the discrete pendulum equation (3.34) since the latter does not depend on N. 
We therefore conclude that the class of discrete surfaces of revolution defined by (3.33) is 

governed by the integrable discrete pendulum equation (3.34). 

3.2.3. Discrete Weingarten surfaces o f  revolution 

In the preceding, we have made assumptions about the discrete Gaugian curvature/~ = 
xtl)x 12) in order to establish further analogies between the discrete and continuous cases. 

Here, as a first test of the appropriateness of the individual discrete principal curvatures ~c ~1 ' 
and x i21 we consider the 'discrete Weingarten surfaces' of revolution defined by the relation 

x (I) = cx  ~2), c = const. (3.46) 

Insertion of the definitions (3.21) into the above constraint and elimination of/~ by means 
of (3.19a) produces the second-order difference equation 

= 1 - r ] T  
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Alternatively, elimination of  r in favour ofx  = tan(/~/2) leads to the second-order difference 

equation 

2 f l - x 2 " ~  xl + x  x + x i  
/ 

c \ l + x 2 ]  x l - x  x - x  i (3.48) 

Both equations may be brought into the compact form 

f l ( X )  - X i f 2 ( X )  
Xl = (3.49) 

f 2 ( X )  - X i f 3 ( X  )" 

The functions f i  (X)  may easily be calculated, depending on whether X = r or X = x. 

Within the class of  difference equations (3.49), Quispel et al. [20] have isolated a 12- 

parameter subclass of  equations which admit first integrals that are biquadratic and sym- 

metric in X and Xt. Furthermore, these 'invariant curves' may be parametrized in terms of  

elliptic functions so that the corresponding two-dimensional mappings (3.49) are considered 

integrable. The 12-parameter class is given by 

/ fl(x) ) 
f ( X )  = [ f 2 ( X )  = (AX)  × (BX) ,  

\ f 3  (X)  

(x2) 
X =  X , 

1 

(3.50) 

where A and B are symmetric but otherwise arbitrary constant matrices, and the corre- 

sponding first integral reads 

X .  (AX1) 
- -  const. (3.51) 

X .  (BX1) 

In the case c = 1, that is K (1 ~ = K (2~, the difference equation (3.47) is indeed a member of  the 

above 12-parameter class. This does not apply to the difference equation (3.48). However, 

it is not difficult to show that the latter admits a first integral which turns out to be a discrete 

Riccati equation and hence may be linearized. In fact, it may be directly verified that 

sin(fl - V/2) c o s ( ~  - V/2) 
fl = Vnl + 3, r - , z = zo (3.52) 

2 s in(v/2)  2 s in(v/2)  

so that 

K (I) ~ K (2) =- c o n s t . ,  r 2 + (z - z0) 2 = const. (3.53) 

Accordingly, as in the continuous case, the principal curvatures are constant and the vertices 

of  the discrete surface of  revolution lie on a sphere. 
The case of  vanishing 'discrete mean curvature' 

7 - / =  K (I)  + x (2) = O, (3 .54 )  

that is c = - 1, is of  particular interest since the corresponding discrete surface of  revolution 

may be interpreted as a 'discrete catenoid'. It turns out that neither the difference equation 
(3.47) nor (3.48), which may be written as 

= x ix j  All 1 ,  (3.55) x2A] l  X 
x 
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rho ~o . 

i 

\ 

Fig. 10. The discrete catenoid and its generator. 

may be located in the 12-parameter class. In fact, the functions f i  associated with (3.55) 

are given by (3.50) with ( 10) (00,) 
A =  0 2 , B =  0 2 0 , 

- 1  0 - 1  0 0 

(3.56) 

but the first integral (3.51) no longer holds since the matrix A is not symmetric. It is therefore 

desirable to classify the matrices A and B which allow integration of the mappings (3.49) 

and (3.50). Thus far, we have not been able to find non-trivial solutions to the difference 

equation (3.55). 

The discrete catenoid along with its generator (discrete catenary) is displayed in Fig. 10. 

Note that, by construction, the distances from the vertex r to the centre of  the corresponding 

osculating circle and the axis of  revolution in 'normal '  direction are the same. 2 

In the continuous setting, the case c = 2 turned out to be governed by the pendulum 

equation. Remarkably, in the discrete case, the functions f i  (X = x) have the form (3.50) 

with symmetric matrices 

A = - 2  0 , B = 1 0 . 

0 0 0 1 

Hence, the corresponding first integral reads 

R ( x - x l )  2 = (x +x l ) ( xx l  + 1). 

(3.57) 

(3.58) 

On the other hand, as pointed out in Section 3.2.2, the discrete pendulum equation (3.34) 

constitutes a symmetry reduction of  the differential-difference Heisenberg spin equation 

with first integral [20]: 

(1 + 2 K ) x 2 x  2 +~r(1 + K)(x2xl + x x  2) + (1 + K) (x  2 -q-- Xl) 

+2Kxxl  + cr(1 + K)(x + xl )  + 1 + 2K = 0, (3.59) 

2 It is evident that the trapezoidal quadrilateral lattices considered here are discrete isothermic in the sense 
of Bobenko and Pinkall [11] since the cross-ratio q of isosceles trapezoids is real. However, q depends on 
n I so that our discrete catenoid is different from that presented in [ 11 ]. 
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where x = tan(f l /2)  and 2gcr = - 1 .  Comparison with (3.58) shows that the latter is a 

specialization (K = - 1 / 2 )  of (3.59) if the ident i f ica t ion/ (  = - l / o r  is made. Thus, as in 

the continuous case, discrete Weingarten surfaces of  revolution with c = 2 are contained 

in the 'discrete Hasimoto '  class given by (3.33). 

We conclude the paper with a curiosity. Let us regard the mapping (3.47) as a sequence 

s,, = r(n)  with initial data so and s j .  If  the constant c and so, sl are rational then the 

entire sequence s,, is rational by virtue of  (3.49). Consequently, there exists integer-valued 

sequences Pn and q,  such that 

P ,  
As,, = - - ,  Pn, q,, ~ Y-. (3.60) 

q,  

On the other hand, the mapping (3.47) may be brought into the form 

(2Sn+l "~C)2 (l+ ASh+I) 2 
[1 - (ASh+l) 2] = \ 2 s , + j  -- c 1 + Ash [1 -- (As,,)2]. (3.61) 

If  we now choose the initial data in such a way that [1 - (zAs0) 2] is a perfect square then 

[1 - (ASh) 2] is a perfect square for all n, that is 

9 

aT~ [ 1 - - ( A S h )  2 ] =  ~9_, an,bn 6 N .  (3.62) 

Hence, the latter and (3.60) imply that the sequence s,, generates suites of  solutions of the 

Fermat equation 

~2 ..j_ ~2 -'~ = p - ,  rh, fi, p ~ N .  (3.63) 

In geometric terms, this is reflected by the fact that the slope of  the edges of  the generator 

F is rational. 
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